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Abstract

A comprehensive numerical study has been conducted to investigate three-dimensional, steady, conjugate heat

transfer of natural convection and conduction in a vertical cubic enclosure within which a centered, cubic, heat-
conducting body generates heat. The physical model considered here assumes that a temperature di�erence exists
across the enclosure (right cold wall and left hot wall) and the body generates a constant amount of heat. Under
these conditions, the ¯ow inside the enclosure is driven by two temperature di�erences: a temperature di�erence

across the enclosure and a temperature di�erence caused by the heat source. A ratio of these two temperatures is a
key parameter in this study. The steady, three-dimensional governing equations are written in a dimensionless form
with dimensionless parameters that decide the heat transfer and ¯ow characteristics in this system. The analysis is

conducted by observing variations of the velocity vectors, pathlines, and isotherms for di�erent Rayleigh numbers
and temperature-di�erence ratios. The details of the three-dimensional ¯ow and isotherms are described in order to
investigate the e�ects of three-dimensionalities on the ¯uid ¯ow and thermal characteristics in the enclosure. The

variations of Nusselt numbers on the hot and cold walls are also presented to show the overall heat transfer
characteristics inside the enclosure. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

An important class of natural convection heat

transfer is that related to buoyancy-driven ¯ows
moving within an enclosure. The heat transfer and

¯ow characteristics of natural convection in rec-

tangular enclosures have attracted much research,

due to their many practical engineering applications,

such as in building insulation, solar energy collec-

tion, cooling of heat-generating components in the

electrical and nuclear industries, and ¯ows in rooms

due to thermal energy sources[1±3]. There are two

elementary classes of natural convection ¯ows in

enclosures. The ®rst is a horizontal cavity with

heating from below and with adiabatic vertical

walls. Natural convection ¯ows in a horizontal cav-

ity are characteristics of Rayleigh±Benard convection

and of practical problems of electronic equipment
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cooling, heat exchanger design, meteorology of the

earth's atmospheric boundary layers, etc. The second

is a vertical cavity with two vertical walls at di�er-

ent temperatures and with adiabatic horizontal sur-

faces. Natural convection ¯ows in a vertical cavity

are probably the most considered con®guration in

the studies of natural convection because of their

relative simplicity and practical importance. Two-

and three-dimensional numerical analyses for a verti-

cal cavity have been performed in the past over a

wide range of Rayleigh numbers [4±10]. These stu-

dies suggested a set of benchmark numerical results

for the two- and three-dimensional, steady, laminar

and turbulent ¯ows for di�erent Rayleigh numbers,

and they also compared their computational results

with the experimental ones [11±13].

Considerable research has also been performed

with various obstacles in the form of partitions or

partial ba�es placed inside enclosures [14]. Studies

revealed that these kinds of obstructions could

change the characteristics of the ¯ow and heat

transfer in an enclosure. Moreover, the e�ects of a

centered, squared, heat-conducting body with and

without heat generation on natural convection in a

vertical square enclosure have been investigated by

several researchers [15,16]. Natural convection in a

vertical cavity with a centered, squared, heat-con-

ducting body is a conjugate heat transfer problem

of natural convection and conduction heat transfer,

and becomes more complex compared to that with-

out a conduction body. House et al. [14] numeri-

cally examined natural convection in a vertical

square enclosure with a centered, squared, heat-con-

ducting body without heat generation. They found

that heat transfer across the enclosure may be

enhanced or decreased by a body with a thermal

conductivity ratio of less than or greater than unity.

Oh et al. [15] and Ha et al. [16] investigated both

the steady and the unsteady natural convection pro-

cesses when a temperature di�erence exists across

an enclosure and, at the same time, when a con-

ducting body generates heat within the enclosure.

Under these conditions, the ¯ow inside the enclosure

is driven by two temperature di�erences: a tempera-

ture di�erence across the enclosure and a tempera-

ture di�erence caused by the heat source. A ratio

of these two temperature di�erences is a very im-

portant factor in deciding the heat transfer and

¯ow characteristics of the enclosure. These studies

investigated the e�ects of the Rayleigh numbers, the

Prandtl numbers, the thermal conductivity ratio, the

heat capacity ratio, and the temperature-di�erence

ratio on variations of streamlines, isotherms, heat-

Nomenclature

A� area ratio (=W 2/L 2)
Cp constant pressure speci®c heat
g gravitational acceleration

kf thermal conductivity of ¯uid
ks thermal conductivity of solid
k� thermal conductivity ratio (=ks/kf )

L length of the enclosure
Nu local Nusselt number
Nu average Nusselt number

P
-

dimensionless pressure
Pr Prandtl number (=n/a)
q
.

heat generation per unit volume
Ra Rayleigh number (=gb(ThÿTc)L

3/na)
T temperature
Tc cold wall temperature
Th hot wall temperature

u velocity in the horizontal direction
�u dimensionless velocity in the horizontal direc-

tion

v velocity in the vertical direction
�v dimensionless velocity in the vertical direction
w velocity in the transverse direction
�w dimensionless velocity in the transverse direc-

tion

W length of the conducting body
x dimensionless horizontal coordinate
x� horizontal coordinate

y dimensionless vertical coordinate
y� vertical coordinate
z dimensionless transverse coordinate

z� transverse coordinate
a thermal di�usivity
b thermal expansion coe�cient

DT � temperature-di�erence ratio (=(qW 2/kf )/
(ThÿTc))

y dimensionless temperature
n kinematic viscosity

r density

Subscripts
c cold
f ¯uid

h hot
max maximum
min minimum

s solid

M.Y. Ha, M.J. Jung / Int. J. Heat Mass Transfer 43 (2000) 4229±42484230



lines, and the average Nusselt numbers on hot and
cold walls.

Most of the previous studies on natural convection
in a vertical cavity with a centered, squared, heat-con-
ducting body with and without heat generation have

been two-dimensional [14±16]. There has been little
study on the three-dimensional natural convection pro-
cess in a vertical cavity when a temperature di�erence

exists across an enclosure and, at the same time, when
a conducting body generates heat within the enclosure.
Three-dimensional calculations are highly desirable

because the real ¯ow in a vertical cavity is three-
dimensional. In the present study, we investigate three-
dimensional heat transfer and ¯ow phenomena of
natural convection in a vertical cubic enclosure within

which a centered, cubic, heat-conducting body gener-
ates heat. We investigate the ¯ow and heat transfer
characteristics of a system by observing variations in

pathlines and isotherms for di�erent Rayleigh numbers
and temperature di�erence ratios. We also study the
heat transfer characteristics by calculating the vari-

ations of Nusselt numbers on hot and cold walls.

2. Statement of the problem

A schematic of the system considered in this paper is
shown in Fig. 1. The system consists of a cube with
sides of length L, within which another cubic solid

body with sides of length W is centered. A cubic con-

ducting body has a thermal conductivity of ks and gen-
erates uniform heat per unit volume of _q: The

temperatures of the left- and right-side walls are main-
tained Th and Tc, respectively. The bottom, top, front-
and rear-side walls are adiabatic. In this study, we

assume that the ¯ow within an enclosure is steady and
laminar, and the radiation e�ects are assumed to be
negligible. The ¯uid properties are also assumed to be

constant, except for the density in the buoyancy term
that follows the Boussinesq approximation. The gravi-
tational acceleration acts parallel to the isothermal

walls.

3. Analysis

The analysis is based on the steady, three-dimen-
sional continuity, momentum, and energy equations in

a dimensionless form. The conservative form of the
dimensionless governing equations for ¯uids can be
expressed as follows:
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Fig. 1. A schematic of the system.
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For a solid body, the energy equation in a dimen-
sionless form becomes
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The dimensionless variables used to create the gov-

erning equations, Eqs. (1)±(6), are de®ned as

x � x �

L
y � y�

L
z � z�

L
u � u�L

a

v � v�L
a

w � w�L
a

P � P �L 2

ra 2
y � Tÿ Tc

Th ÿ Tc

�7�

For the boundary conditions, the velocities are set
to zero for all solid walls. The temperature boundary
conditions and the conditions at the ¯uid/body inter-

face are as follows

At x � 0: y � 1 �8�

At x � 1: y � 0 �9�
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The average Nusselt numbers of the hot and cold
walls are calculated based on the enclosure length and

the thermal conductivity of the ¯uid, and are expressed
as follows:

For the hot wall

Nuh � ÿ
�1
0

�1
0

@y
@x
jx�0 dy dz �15�

For the cold wall

Nuc �
�1
0

�1
0

@y
@x
jx�1 dy dz �16�

From the dimensionless governing equations, Eqs.
(1)±(6), it can be noticed that there are ®ve dimension-

less parameters (Ra, Pr, k�, A�, and DT � that govern
the heat transfer and ¯ow characteristics of three-
dimensional natural convection in a cubic enclosure
with a heat-generating cubic-conducting body.

4. Numerical procedure

The governing equations are solved numerically by
means of a ®nite-volume method. This approach allows
for the treatment of arbitrary geometries and avoids

problems with metric singularities usually associated
with a ®nite-di�erence method. We ®rst integrated the
di�erential conservation equations over a ®nite volume
V enclosed by surface S. The volume integral for the ¯ux

vector was converted to a surface integral through the
Gauss divergence theorem. The ¯uid and body regions
were solved simultaneously by introducing a block par-

ameter, which distinguishes a body region from a ¯uid
region, into discretized governing equations. Thus, con-
vection terms were automatically turned o� in the body

region, and the energy balance in the ¯uid±body inter-
face was carefully established to make sure that the
matching conditions of Eqs. (12)±(14) were satis®ed.
The convergence of the numerical solution was moni-

tored by observing the energy balance, especially the
Nusselt number for both walls for every time step.
For the purpose of code validation, the natural con-

vection problem in an enclosure without a cubic body
in the center of the enclosure was tested for Ra =103,
104 and 105, respectively, using a grid size of 41� 41�
41 in the x-, y-, and z-directions. The calculated aver-
age Nusselt numbers at the hot wall for the test cases
were compared with the values calculated by Fusegi et
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al. [8]. As shown in Table 1, the calculated Nusselt
numbers agree well with the values calculated by

Fusegi et al. [8], and the deviation from Fusegi et al.'s
results was less than 2.4%. The temperature and vel-
ocity pro®les from the present calculation for Ra =
105 represented well the results obtained by Fusegi et

al. [8], as shown in Figs. 2 and 3.

5. Results and discussion

After a successful benchmark test for our three-
dimensional program, we investigated three-dimen-

sional heat transfer and ¯ow phenomena of natural
convection in a vertical cubic enclosure within which a
centered, cubic, heat conducting body generates heat.

The grid system employed for all the calculations in
this article is shown in Fig. 4, with a grid size of 51 �
51 � 51 in the x-, y-, and z-directions. The grid is

stretched a little toward each wall to resolve the rapid
variations of ¯ow properties. As mentioned earlier,
there are ®ve dimensionless parameters that govern the
steady natural convection heat transfer and the ¯ow of

this system. In the present study, we consider the case
in which a sodium ¯uid surrounds a heat-generating
and conducting body, resulting in constant Pr, k� and
A� values of 0.0112, 1.72, and 0.25, respectively. We

calculated the cases shown in Table 2 for two Rayleigh
numbers (103 and 104) and two temperature-di�erence
ratios (2.5 and 25) to investigate their in¯uence on the

heat transfer and ¯ow structures of the system.

5.1. Case of Ra = 103

Figs. 5 and 6 show the velocity vectors and pathlines

at di�erent x-, y-, and z-planes for Ra= 103 and
DT � � 2:5: The constant x-, y-, and z-planes are, re-
spectively, located at the upper, middle, and lower

parts of Figs. 5 and 6. As shown in the constant z-
planes, the ¯ow circulates in the clockwise direction,
due to the presence of hot and cold walls on the left

and right sides, respectively. The velocity vectors at the
z = 0.125 and 0.875 planes corresponding to the cen-
ter plane of the front and rear channels are similar to
the ¯ow in a cubic enclosure without a heat-generating

Table 1

Comparison of the present average Nusselt number at the hot

wall with Fusegi et al.'s results for Pr = 0.71

Ra 103 104 105

Nu Fusegi et al. [8] 1.085 2.1 4.361

Present study 1.072 2.07 4.464

Fig. 2. Comparison of the present results (shown in symbols) for temperature pro®les in the symmetry plane of z � 0:5 with results

of Fusegi et al. [8] (shown in solid curves) for Ra � 105: (a) results at various heights, (b) results at x � 0:5:

Table 2

Values of Rayleigh number and temperature-di�erence ratio

used in the present study

Ra DT �

Case 1 103 2.5

Case 2 103 25.0

Case 3 104 2.5

Case 4 104 25.0
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and conducting body, which forms a single shell in the

enclosure. The velocity vectors at the z = 0.5 plane

corresponding to the center z-plane of the enclosure

have di�erent pattern than those at z = 0.125 and

0.875, due to the presence of a conducting body. Due

to the main circulating ¯ow that moves in the clock-

wise direction, the velocity vectors generally move

from bottom to top at the x = 0.125 plane (center

plane of the left channel), and from top to bottom at

the x = 0.875 plane (center plane of the right chan-

Fig. 3. Comparison of the present results (shown in solid curves) for temperature pro®les in the symmetry plane of z � 0:5 with

results of Fusegi et al. [8] (shown in symbols) for Ra � 105: (a) x � 0:5, (b) y � 0:5:

Fig. 4. Grid distribution of computational domain.
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nel). The ¯ow at the x = 0.5 plane (center x-plane of

the enclosure) shows a more complex pattern than that

at the left and right channels. Due to the presence of a

cubic conducting body, the ¯ow rises generally from

bottom to top and forms recirculating ¯ows both at

the top corners of the enclosure and at the top corners

of the conducting body. Similar to the ¯ow at constant

x-planes, the ¯ow at the y = 0.125 plane (center plane

of the bottom channel) moves from right to left, and

that at the y = 0.875 plane (center plane of the top

channel) directs from left to right, because the main

¯ow circulates in the clockwise direction. The ¯ow at

the y = 0.5 plane (center y-plane of the enclosure)

generally moves from left to right with a more complex

pattern, compared to the ¯ow at the bottom and the

top channels, and forms vortices at the corners on the

right side of the conducting body.

Figs. 7±9 show the iso-velocity contours of u-, v-,

and w-velocity components at di�erent constant planes

for Ra = 103 and DT � � 2:5: Because the circulating

¯ow moves mainly in the clockwise direction, the u-vel-

ocity has large positive and negative values at the top

and bottom channels, respectively, while the v-velocity

has large positive and negative values at the right and

Fig. 5. Velocity vectors for di�erent x-, y-, and z-planes for Ra = 103 and DT � � 2:5:
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left channels, respectively. The w-velocity generally has

smaller values than do the u- and v-velocities, but

shows a more complex pattern, compared to u- and v-

velocity contours. The u-, v-, and w-velocities have

large variations in the z-direction, due to the presence

of the conducting body. Thus, the u-, v-, and w-vel-

ocities show very complex three-dimensionalities of

¯ow in an enclosure with the presence of the conduct-

ing body, compared to the case without the conducting

body of Fusegi et al. [8].

Fig. 10 shows isotherms at di�erent constant planes

for Ra = 103 and DT � � 2:5: At the z = 0.125 and

0.875 planes, the isotherms at the upper part lean very

slightly on the cold wall, and those at the lower part

likewise lean very slightly on the hot wall, due to the

presence of a small ¯uid ¯ow circulating in the clock-

wise direction. However, because the heat is trans-

ferred from the conducting body to the ¯uid at the z

= 0.5 plane, the isotherms at the left and right chan-

nels of the z = 0.5 plane have lower and higher gradi-

ents, respectively, than the isotherms at the z = 0.125

and 0.875 planes. Because the thermal conductivity of

the body is greater than that of ¯uid, the isotherms in

the conducting body lean more to the cold wall than

Fig. 6. Pathlines for di�erent x-, y-, and z-planes for Ra = 103 and DT � � 2:5:
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those in the ¯uid at the z = 0.5 plane. Isotherms at

the y = 0.125 plane are almost parallel to the z-axis.

The interval between isotherms is almost uniform,
showing conduction dominance at the bottom channel.

The iostherms at the y = 0.5 plane are similar to
those at the z = 0.5 plane. The thermal gradients at

the y = 0.5 plane increase with increasing x-distance.

Because the heat is transferred to the ¯uid from the
hot wall and the conducting body and the ¯ow circu-

lates in the clockwise direction, the isotherms at the y

= 0.875 plane have lower and higher thermal gradi-
ents at the left and right channels, respectively. At the

constant x-planes, due to the circulating ¯ow in the

clockwise direction and the heat transferred from the
hot wall and the conducting body to the ¯uid, the

values of isotherms decrease with increasing x-distance

from the hot wall and increase with increasing y-dis-
tance from the bottom wall. The isotherms at the con-

stant x-planes show large variations in shape in the z-

direction. This results represent stronger three-dimen-
sionalities of the present problem with the presence of

a cubic conducting body than natural convection with-
out a conducting body.

Figs. 11 and 12 show the velocity vectors and path-

Fig. 7. u-Velocity contours for di�erent x-, y-, and z-planes for Ra = 103 and DT � � 2:5:
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lines at di�erent constant planes for Ra = 103 and

DT � � 25: When DT � is increased to 25, the ¯uid tem-

perature at the left channel becomes higher than the

hot wall temperature, due to increasing heat transfer

from the conducting body. Thus, the ¯ow for case 2

shows a much di�erent pattern from that for case 1.

At the z = 0.125 and 0.875 planes, the ¯ow close to

the hot wall moves downward and forms the recircu-

lating ¯ow in the counterclockwise direction in ad-

dition to the main circulating ¯ow in the clockwise

direction. Thus, two cells circulate in the opposite

directions, compared to the one cell formed in a cubic

enclosure without a conducting body. At the z = 0.5

plane, the main ¯ow circulates in the clockwise direc-

tion. However, the vortex at the left channel is divided

into two parts at the top and bottom corners, due to

the presence of a conducting body. Because of heat

transfer from the body, small vortices circulate in the

clockwise direction next to the body at the right chan-

nel. The ¯ow at the x = 0.125 plane generally moves

upwards around z = 0.5. However, when the ¯ow

approaches the wall at z = 0 and 1, the ¯ow at the

Fig. 8. v-Velocity contours for di�erent x-, y-, and z-planes for Ra = 103 and DT � � 2:5:
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upper part moves downward, due to the e�ects of the

recirculating ¯ow at the left channel, and shows a

di�erent ¯ow pattern from that for case 1. The ¯ow at

x = 0.5 generally moves upward and forms a recircu-

lating ¯ow around the top right and left corners of the

conducting body. However, the vortices formed at the

top right and left corners of the enclosure (as observed

in case 1) vanish, due to an increasing upward ¯ow

with increasing heat transfer to the ¯uid from the con-

ducting body. The ¯ow at x = 0.875 generally moves

downward, similar to case 1. The ¯ow at y = 0.125

(bottom channel) generally directs from right to left.

The magnitude of the ¯ow velocity close to the left

wall becomes smaller and changes its direction from

left to right, due to the recirculating ¯ow in the coun-

terclockwise direction at the left channel. The main

¯ow at y = 0.875 (top channel) moves from left to

right, but the ¯ow at the left channel directs from right

to left at the left channel, due to the recirculating ¯ow

at the left channel. The ¯ow at y = 0.5 generally

directs from left to right, similar to case 1.

Fig. 13 shows the isotherms at di�erent x-, y-, and

z-planes for Ra = 103 and DT � � 25: When DT � is

increased to 25, the temperature of the ¯uid and the

Fig. 9. w-Velocity contours for di�erent x-, y-, and z-planes for Ra = 103 and DT � � 2:5:
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body increases with increasing heat generation at the

conducting body. The ¯uid temperature at the left

channel becomes higher than the hot wall temperature

with a lower gradient, while the ¯uid temperature at
the right channel is low with a denser gradient. The

maximum temperature at the conducting body is

higher than the hot wall temperature and is located

close to the center of the body. The heat transfer and

¯uid ¯ow characteristics of the enclosure become
dominated by the temperature di�erence caused by the

heat source at DT � � 25, resulting in di�erent iso-

therm patterns from that for case 1.

5.2. Case of Ra = 104

Fig. 14 shows the velocity vectors, pathlines, and

isotherms at di�erent z-planes for Ra = 104 and

DT � � 2:5: The ¯ow for case 3 of Ra = 104 and

DT � � 2:5 smoothly circulates in the clockwise direc-

tion, similar to that for case 1 of Ra = 103 and

DT � � 2:5: However, if the circulating ¯ow meets the

corner of the conducting body when the velocity mag-

nitude increases with an increasing Rayleigh number,

the ¯ow separates from the corner and is reattached to

the surface of the body, forming four vortices on the

Fig. 10. Isotherms for di�erent x-, y-, and z-planes for Ra = 103 and DT � � 2:5:
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surface of the conducting body. Thus, a ¯ow pattern

for case 3 is di�erent from that for case 1. The corner

vortices in the four corners of the enclosure are also

observed, due to an increase in the velocity with an

increase in the Rayleigh number. When the Rayleigh

number is increased to 104, the isotherms move in the

clockwise direction with increasing circulating ¯ow,

resulting in a dense gradient around the top right and

bottom left corner. When the isotherms at z = 0.125

and 0.5 are compared, the isotherms in the conducting

body have a slightly denser gradient than that in the

¯uid, because the thermal conductivity of the body is

larger than that of the ¯uid.

Fig. 15 shows the velocity vectors, pathlines, and

isotherms at di�erent z-planes for Ra = 104 and

DT � � 25: At the z = 0.125 and 0.875 planes, the size

of the main ¯ow circulating in the clockwise direction

decreases, and the size of the vortex in the top left cor-

ner increases, due to an increase in velocity with an

increasing Rayleigh number. At the z = 0.5 plane,
vortices form at the top left corner and the bottom

surface of the conducting body, which are not present

in case 2 of Ra = 103 and DT � � 25: The size of the

Fig. 11. Velocity vectors for di�erent x-, y-, and z-planes for Ra = 103 and DT � � 25:
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vortex on the right-side surface of the body also
increases, compared to case 2. The general shape of

the isotherms for case 4 is similar to that for case 2
and is mainly governed by the heat transfer from the
conducting body. The values of the isotherms for case

4 are slightly lower than those for case 2 because more
heat is transferred to the cold wall, due to an increase
in convection with an increasing Rayleigh number.

5.3. Local and average Nusselt numbers

Fig. 16 shows the distribution of local Nusselt num-

bers at the hot and cold walls for case 1 (Ra = 103

and DT � � 2:5). The general shape of the local Nusselt

number distribution at the hot and cold walls is similar

to the isotherm distribution at the x = 0.125 and

0.875 planes shown in Fig. 10 because the local Nusselt

number is determined from the gradient of the iso-

therms normal to the hot and cold walls. The ¯uid

temperature at the left channel increases due to heat

transfer from the hot wall and the body while the ¯uid

moves upward at the left channel. Thus, the tempera-

ture di�erence between the hot wall �y � 1� and the

¯uid at the left channel decreases, and the local Nus-

Fig. 12. Pathlines for di�erent x-, y-, and z-planes for Ra = 103 and DT � � 25:
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selt number decreases with increasing y-distance from

the bottom wall. The cubic conducting body with heat
generation is located at the center of a cubic enclosure,

as shown in Fig. 1. Thus, the ¯uid at 0.25 R z R 0.75

receives more heat from the conducting body than the
¯uids located at 0 R z R 0.25 and 0.75 R z R 1, due to

its direct contact with the conducting body, resulting

in a smaller temperature di�erence at 0.25 R z R 0.75
than at 0 R z R 0.25 and 0.75 R z R 1. Thus, the local

Nusselt number around z = 0 (front wall) and z = 1
(rear wall) is larger than that around z = 0.5, proving

three-dimensional heat transfer characteristics of the

system. While the ¯uid moves downward at the right
channel, the ¯uid temperature decreases, due to heat

transfer to the cold wall, and the temperature di�er-

ence between the cold wall and the ¯uid decreases.

Thus, the local Nusselt number at the cold wall

increases with increasing y-distance from the bottom

wall. The local Nusselt number at the cold wall also

varies along the z-direction. The ¯uid temperature and

the temperature di�erence between the ¯uid and the

cold wall at 0.25 R z R 0.75 are larger than those at 0

R z R 0.25 and 0.75 R z R 1. Thus, the local Nusselt

number at 0.25 R z R 0.75 is larger than that at 0 R z

R 0.25 and 0.75 R z R 1. This local Nusselt number

distribution at the hot and cold walls shows stronger

three-dimensionalities of the present problem than the

Fig. 13. Isotherms for di�erent x-, y-, and z-planes for Ra = 103and DT � � 25:
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three-dimensional natural convection in a cubic enclo-

sure without a conducting body.

Fig. 17 shows the distribution of local Nusselt num-

bers at the hot and cold walls for case 2 (Ra = 103

and DT � � 25). When DT � is increased to 25 from 2.5

of case 1, the ¯uid temperature at the hot wall

becomes higher than the hot wall temperature. Thus,

the heat is transferred from the ¯uid to the hot wall,

resulting in a negative local Nusselt number at the hot

wall. Similar to case 1, the local Nusselt number

decreases with increasing y-distance from the bottom

wall, meaning that the heat transferred from the ¯uid

to the hot wall increases with increasing y-distance

from the bottom wall. The position of the minimum

negative (maximum absolute) local Nusselt number is

located around y = 0.63, due to the heat transfer from

the body to the circulating ¯ow. The local Nusselt

number along the z-direction for case 2 has a pattern

similar to that for case 1, showing a larger local Nus-

selt number around the front and rear walls than

around the center. The local Nusselt number distri-

bution at the cold wall for case 2 is similar to that for

case 1. However, the magnitude of the local Nusselt

number at the cold wall for case 2 is larger than that

for case 1, due to increasing heat transfer from the

conducting body. The position of the maximum local

Fig. 14. Pathlines, velocity vectors and isotherms for di�erent x-, y-, and z-planes for Ra = 104 and DT � � 2:5:
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Nusselt number at the cold wall is around y = 0.63;

this position is similar to that of the hot wall.
Fig. 18 shows the local Nusselt number distribution

at the hot and cold walls for case 3 (Ra = 104 and

DT � � 2:5). The general trend for the variation of the
local Nusselt numbers at the hot and cold walls along
the y-direction for case 3 is similar to that for case 1.

With increasing y-distance from the bottom wall, the
local Nusselt numbers at the hot wall decrease and

those at the cold wall increase. When the Rayleigh

number is increased from 103 for case 1 to 104 for

case3, the convection e�ects increase with increasing
magnitude of velocity. Thus, the local Nusselt numbers
at the hot and cold walls for case 3 are generally larger

than those for case 1, due to an increase in convection
with an increase in Rayleigh number. When
DT � � 2:5, the amount of heat transfer rate from the

conducting body is small. If the Rayleigh number is
increased from 103 to 104 for DT � � 2:5, the e�ects of

convective heat transfer due to the temperature di�er-

Fig. 15. Pathlines, velocity vectors and isotherms for di�erent x-, y-, and z-planes for Ra = 104 and DT � � 25:
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ence between the hot and cold walls are larger than

those due to temperature di�erence caused by the heat

source of the conducting body. Thus, the local Nusselt

numbers at the hot and cold walls along the z-direction

for case 3 show smaller variation than that for case 1.

Fig. 19 shows the local Nusselt number distri-

bution at the hot and cold walls for case 4 (Ra =

104 and DT � � 25). When DT � is increased to 25 for

Ra = 104, the heat transfer in the enclosure is mainly

governed by the heat transfer from the conducting

body. Thus, the general pattern of the local Nusselt

number distribution at the hot and cold walls for case

4 is similar to that for case 2. The main di�erence

between case 2 and case 4 is that, with increasing con-

vective heat transfer due to the temperature di�erence

between the hot and cold walls, the value of the local

Nusselt number for case 4 is larger than that for case

2. The position of the maximum absolute local Nusselt

number at the hot and cold walls for case 4 moves

somewhat upward, compared to the case 2, due to the

increased circulating velocity.

The average Nusselt number at the hot and cold

walls is obtained by integrating the local Nusselt num-

ber according to Eqs. (15) and (16), as given in Table 3.

At DT � � 2:5 in cases 1 and 3, the average Nusselt

number at the hot and cold walls has positive values,

meaning that heat is transferred from the hot wall to

the ¯uid and from the ¯uid to the cold wall. As DT � is
increased to 25 in cases 2 and 4, the average Nusselt

number at the hot wall has negative values, meaning

that heat is transferred from the ¯uid to the hot wall.

The convection and heat transfer increase with increas-

Fig. 16. Local Nusselt number at the hot and cold walls for Ra = 103 and DT � � 2:5:

Fig. 17. Local Nusselt number at the hot and cold walls for Ra = 103 and DT � � 25:
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ing Rayleigh number and DT �: Thus, the average Nus-

selt number increases with increasing Rayleigh number
and DT �: As shown in Table 3, the present three-
dimensional results are compared with two-dimen-

sional ones, and show big di�erences between two
results, due to the three-dimensionalities of the present
problem with the presence of the body with an enclo-
sure.

6. Summary and conclusion

A numerical study has been conducted to investigate

the steady, three-dimensional heat transfer and ¯ow
characteristics of natural convection in a vertical cubic
enclosure when a temperature di�erence exists across
the enclosure and, at the same time, when a cubic con-

ducting body generates heat within the cubic enclosure.

The following summarizes the notable features

observed in this study.

1. A computer program was developed to calculate the

three-dimensional conjugate heat transfer problem

of natural convection and conduction heat transfer.

2. The ¯ow and isotherm distributions show very com-

plex three-dimensional patterns, owing to the

presence of a conducting body and heat transfer

from the conducting body. The presence of a con-

ducting body results in more three-dimensionalities

in the transverse direction for both ¯uid ¯ow and

heat transfer.

3. At DT � � 2:5, the local Nusselt numbers at the hot

and cold walls for Ra � 103 vary signi®cantly in the

z-direction, due to the heat transfer from the con-

ducting body. However, when the Rayleigh number

is increased to the value of 104, the convective

Fig. 18. Local Nusselt number at the hot and cold walls for Ra = 104 and DT � � 2:5:

Fig. 19. Local Nusselt number at the hot and cold walls for Ra = 104 and DT � � 25:
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e�ects due to the temperature di�erence between the
hot and cold walls become larger than those due to

the heat transfer from the conducting body to the
¯uid, resulting in smaller variations in the z-direc-
tion than in the case of DT � � 2:5 and Ra � 103:
At DT � � 25, the e�ects of heat transfer from the
conducting body to the ¯uid are very strong, and
the local Nusselt numbers at the hot and cold walls

show a large variation in the z-direction for Ra �
103 and 104. The local Nusselt number increases
when the Rayleigh number and DT � increase.

4. The presence of a cubic conducting body in a cubic

enclosure results in a larger variation of the local
Nusselt number at the hot and cold walls in the z-
direction, compared to cases without a cubic con-

ducting body in the cubic enclosure, indicating the
existence of strong three-dimensionalities of natural
convection with a conducting body.
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Table 3

Comparison of two- and three-dimensional average Nusselt

numbers at the hot and cold wallsa

Case 1 Case 2 Case 3 Case 4

Nuh 3D 0.691 ÿ3.173 1.170 ÿ2.393
2D ÿ0.077 ÿ11.473 0.155 ÿ11.101

Nuc 3D 1.487 5.516 1.677 6.023

2D 2.238 6.759 3.283 7.649

a 2D, two-dimensional calculation; 3D, three-dimensional

results.
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